2020Sanchez Cleaner

From 3DEM-Methods
Jump to: navigation, search


Sanchez-Garcia, R.; Segura, J.; Maluenda, D.; Sorzano, C. O. S., Carazo, J. M. MicrographCleaner: A python package for cryo-EM micrograph cleaning using deep learning. J. Structural Biology, 2020, 210, 107498


Cryo-EM Single Particle Analysis workflows require tens of thousands of high-quality particle projections to unveil the three-dimensional structure of macromolecules. Conventional methods for automatic particle picking tend to suffer from high false-positive rates, hampering the reconstruction process. One common cause of this problem is the presence of carbon and different types of high-contrast contaminations. In order to overcome this limitation, we have developed MicrographCleaner, a deep learning package designed to discriminate, in an automated fashion, between regions of micrographs which are suitable for particle picking, and those which are not. MicrographCleaner implements a U-net-like deep learning model trained on a manually curated dataset compiled from over five hundred micrographs. The benchmarking, carried out on approximately one hundred independent micrographs, shows that MicrographCleaner is a very efficient approach for micrograph preprocessing. MicrographCleaner (micrograph_cleaner_em) package is available at PyPI and Anaconda Cloud and also as a Scipion/Xmipp protocol. Source code is available at https://github.com/rsanchezgarc/micrograph_cleaner_em.




Related software

Related methods