Difference between revisions of "2009Lebbink TemplateMatching2"

From 3DEM-Methods
Jump to: navigation, search
 
 
Line 2: Line 2:
  
 
Lebbink MN, van Donselaar E, Humbel BM, Hertzberger LO, Post JA, Verkleij AJ. Induced membrane domains as visualized by electron tomography and template matching. J Struct Biol. 2009 May;166(2):156-61.
 
Lebbink MN, van Donselaar E, Humbel BM, Hertzberger LO, Post JA, Verkleij AJ. Induced membrane domains as visualized by electron tomography and template matching. J Struct Biol. 2009 May;166(2):156-61.
 
  
 
== Abstract ==
 
== Abstract ==
 +
Membranes play a crucial role in many cellular processes, and it is therefore not surprising that many electron tomographic studies in life sciences concern membranous structures. While these tomographic studies provide many new insights into membrane connections and continuities in three dimensions, they are mostly limited to a macro-morphological level. In this paper, we demonstrate that by combining electron tomography and three-dimensional template matching we are able to investigate membrane morphology at a new level: membrane domains in three dimensions. To test this, temperature induced lipid phase separation in the biological model system of the Escherichia coli bacteria was used. We compared the inner (containing phospholipids) and outer (containing lipopolysaccharides) leaflet of the E. coli outer membrane at both 37 and -20 degrees C, and could visualize how these leaflets react differently to temperature shifts. These findings can be explained by the physico-chemical nature of the building blocks and are in line with earlier published data. This study shows that the combination of electron tomography and template matching is robust enough to visualize membrane domains that are beyond the perception of manual annotation.
  
Three-dimensional electron microscopy (3DEM) has made significant contributions to structural biology. To accomplish this feat, many image-processing software packages were developed by various laboratories. The independent development of methods naturally implied the adoption of dissimilar conventions-penalizing users who want to take advantage of the wealth of algorithms from different packages. In addition, a public repository of 3DEM research results, the EM Data Bank, is now established. In an era where information exchange is important, standardizing conventions is a necessity. The 3DEM field requires a consistent set of conventions. We propose a set of common conventions named the "3DEM Image Conventions." They are designed as a standardized approach to image interpretation and presentation. In this regard, the conventions serve as a first step on which to build data-exchange solutions among existing software packages and as a vehicle for homogenous data representation in data archives, such as the EM Data Bank.
+
== Keywords ==
  
== Keywords ==
+
== Links ==
 +
Article: http://dx.doi.org/10.1016/j.jsb.2009.01.006   
  
Conventions, software interoperability
+
== Related software ==
  
== Links ==
+
== Related methods ==

Latest revision as of 09:40, 6 August 2009

Citation

Lebbink MN, van Donselaar E, Humbel BM, Hertzberger LO, Post JA, Verkleij AJ. Induced membrane domains as visualized by electron tomography and template matching. J Struct Biol. 2009 May;166(2):156-61.

Abstract

Membranes play a crucial role in many cellular processes, and it is therefore not surprising that many electron tomographic studies in life sciences concern membranous structures. While these tomographic studies provide many new insights into membrane connections and continuities in three dimensions, they are mostly limited to a macro-morphological level. In this paper, we demonstrate that by combining electron tomography and three-dimensional template matching we are able to investigate membrane morphology at a new level: membrane domains in three dimensions. To test this, temperature induced lipid phase separation in the biological model system of the Escherichia coli bacteria was used. We compared the inner (containing phospholipids) and outer (containing lipopolysaccharides) leaflet of the E. coli outer membrane at both 37 and -20 degrees C, and could visualize how these leaflets react differently to temperature shifts. These findings can be explained by the physico-chemical nature of the building blocks and are in line with earlier published data. This study shows that the combination of electron tomography and template matching is robust enough to visualize membrane domains that are beyond the perception of manual annotation.

Keywords

Links

Article: http://dx.doi.org/10.1016/j.jsb.2009.01.006

Related software

Related methods