2011Singer SDP: Difference between revisions
Amit Singer (talk | contribs) |
Amit Singer (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
== Abstract == | == Abstract == | ||
The cryo-electron microscopy reconstruction problem is to find the three-dimensional (3D) structure of a macromolecule given noisy samples of its two-dimensional projection images at unknown random directions. Present algorithms for finding an initial 3D structure model are based on the "angular reconstitution" method in which a coordinate system is established from three projections, and the orientation of the particle giving rise to each image is deduced from common lines among the images. However, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In this paper we describe two algorithms for finding the unknown imaging directions of all projections by minimizing global self-consistency errors. In the first algorithm, the minimizer is obtained by computing the three largest eigenvectors of a specially designed symmetric matrix derived from the common lines, while the second algorithm is based on semidefinite programming (SDP). Compared with existing algorithms, the advantages of our algorithms are five-fold: first, they accurately estimate all orientations at very low common-line detection rates; second, they are extremely fast, as they involve only the computation of a few top eigenvectors or a sparse SDP; third, they are nonsequential and use the information in all common lines at once; fourth, they are amenable to a rigorous mathematical analysis using spectral analysis and random matrix theory; and finally, the algorithms are optimal in the sense that they reach the information theoretic Shannon bound up to a constant for an idealized probabilistic model. | |||
== Keywords == | == Keywords == | ||
Semidefinite programming, random matrices, Wigner's semi-circle law, common lines. | |||
== Links == | == Links == | ||
http://www.ncbi.nlm.nih.gov/pubmed/22536457 | |||
== Related software == | == Related software == | ||
ASPIRE | |||
== Related methods == | == Related methods == | ||
== Comments == | == Comments == |
Latest revision as of 18:54, 16 July 2014
Citation
Singer A. & Shkolnisky Y. Three-Dimensional Structure Determination from Common Lines in Cryo-EM by Eigenvectors and Semidefinite Programming. SIAM Journal on Imaging Sciences, 2011, 4 (2), 543-572.
Abstract
The cryo-electron microscopy reconstruction problem is to find the three-dimensional (3D) structure of a macromolecule given noisy samples of its two-dimensional projection images at unknown random directions. Present algorithms for finding an initial 3D structure model are based on the "angular reconstitution" method in which a coordinate system is established from three projections, and the orientation of the particle giving rise to each image is deduced from common lines among the images. However, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In this paper we describe two algorithms for finding the unknown imaging directions of all projections by minimizing global self-consistency errors. In the first algorithm, the minimizer is obtained by computing the three largest eigenvectors of a specially designed symmetric matrix derived from the common lines, while the second algorithm is based on semidefinite programming (SDP). Compared with existing algorithms, the advantages of our algorithms are five-fold: first, they accurately estimate all orientations at very low common-line detection rates; second, they are extremely fast, as they involve only the computation of a few top eigenvectors or a sparse SDP; third, they are nonsequential and use the information in all common lines at once; fourth, they are amenable to a rigorous mathematical analysis using spectral analysis and random matrix theory; and finally, the algorithms are optimal in the sense that they reach the information theoretic Shannon bound up to a constant for an idealized probabilistic model.
Keywords
Semidefinite programming, random matrices, Wigner's semi-circle law, common lines.
Links
http://www.ncbi.nlm.nih.gov/pubmed/22536457
Related software
ASPIRE