2018Downing DepthOfField

From 3DEM-Methods
Revision as of 07:04, 28 December 2017 by WikiSysop (talk | contribs) (Created page with "== Citation == Downing, K. H. & Glaeser, R. M. Estimating the effect of finite depth of field in single-particle cryo-EM. Ultramicroscopy, 2017, 184, 94-99 == Abstract == T...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

Downing, K. H. & Glaeser, R. M. Estimating the effect of finite depth of field in single-particle cryo-EM. Ultramicroscopy, 2017, 184, 94-99

Abstract

The extent to which the resolution varies within a three-dimensional (3-D) reconstruction, when the diameter of an object is large, is investigated computationally. Numerical simulation is used to model ideal three-dimensional point-spread functions at different radial positions within an object. It is shown that reconstructed density maps are affected less than might have been expected when particles are larger than the depth of field. This favorable outcome is attributed mainly to the fact that a point which lies outside the depth of field relative to the center, for some orientations of the object, will also lie within the depth of field for other orientations. We find, as a result, that the diameter of a particle can be as much as four times the depth of field (as defined by a 90 degree phase-error criterion) before curvature of the Ewald sphere becomes a limiting factor in determining the resolution that can be achieved.

Keywords

Links

https://www.sciencedirect.com/science/article/pii/S0304399117301699

Related software

Related methods

Comments