2020Ortiz CrossValidation

From 3DEM-Methods
Revision as of 08:35, 11 August 2020 by WikiSysop (talk | contribs) (Created page with "== Citation == Ortiz, S.; Stanisic, L.; Rodriguez, B. A.; Rampp, M.; Hummer, G.; Cossio, P. Validation tests for cryo-EM maps using an independent particle set. Journal of st...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

Ortiz, S.; Stanisic, L.; Rodriguez, B. A.; Rampp, M.; Hummer, G.; Cossio, P. Validation tests for cryo-EM maps using an independent particle set. Journal of structural biology: X, 2020, 4, 100032

Abstract

Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is to monitor how the map probability evolves over the control set during the 3D refinement. The method is complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each filtered map given the control set. For high-quality maps, the probability should increase as a function of the frequency cutoff and the refinement iteration. We also compute the similarity between the densities of probability distributions of the two reconstructions. As higher frequencies are included, the distributions become more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate datasets that are constructed from noise particles. We conclude that validation against a control particle set provides a powerful tool to assess the quality of cryo-EM maps.

Keywords

Links

https://www.sciencedirect.com/science/article/pii/S2590152420300143

Related software

Related methods

Comments