2020Sharon NonUniformKam

From 3DEM-Methods
Revision as of 19:38, 25 February 2021 by Amit Singer (talk | contribs) (Created page with "== Citation == N. Sharon, J. Kileel, Y. Khoo, B. Landa, A. Singer, "Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angle...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

N. Sharon, J. Kileel, Y. Khoo, B. Landa, A. Singer, "Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angles", Inverse Problems, 36 (4) 044003 (2020). [1]

Abstract

Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is an increasingly popular technique for determining the 3D structure of a molecule from several noisy 2D projections images taken at unknown viewing angles. Most reconstruction algorithms require a low-resolution initialization for the 3D structure, which is the goal of ab initio modeling. Suggested by Zvi Kam in 1980, the method of moments (MoM) offers one approach, wherein low-order statistics of the 2D images are computed and a 3D structure is estimated by solving a system of polynomial equations. Unfortunately, Kam's method suffers from restrictive assumptions, most notably that viewing angles should be distributed uniformly. Often unrealistic, uniformity entails the computation of higher-order correlations, as in this case first and second moments fail to determine the 3D structure. In the present paper, we remove this hypothesis, by permitting an unknown, non-uniform distribution of viewing angles in MoM. Perhaps surprisingly, we show that this case is statistically easier than the uniform case, as now first and second moments generically suffice to determine low-resolution expansions of the molecule. In the idealized setting of a known, non-uniform distribution, we find an efficient provable algorithm inverting first and second moments. For unknown, non-uniform distributions, we use non-convex optimization methods to solve for both the molecule and distribution.

Keywords

Cryo-EM, ab initio modeling, autocorrelation analysis, method of moments, spherical harmonics, Wigner matrices, non-convex optimization


Links

[2]

Related software

Related methods

Comments