2023Chen GMM

From 3DEM-Methods
Revision as of 06:04, 24 August 2023 by WikiSysop (talk | contribs) (Created page with "== Citation == Chen, Muyuan / Toader, Bogdan / Lederman, Roy. Integrating molecular models into CryoEM heterogeneity analysis using scalable high-resolution deep Gaussian mix...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

Chen, Muyuan / Toader, Bogdan / Lederman, Roy. Integrating molecular models into CryoEM heterogeneity analysis using scalable high-resolution deep Gaussian mixture models. 2023. J. Molecular Biology, Vol. 435, No. 9, p. 168014

Abstract

Resolving the structural variability of proteins is often key to understanding the structure–function relationship of those macromolecular machines. Single particle analysis using Cryogenic electron microscopy (CryoEM), combined with machine learning algorithms, provides a way to reveal the dynamics within the protein system from noisy micrographs. Here, we introduce an improved computational method that uses Gaussian mixture models for protein structure representation and deep neural networks for conformation space embedding. By integrating information from molecular models into the heterogeneity analysis, we can analyze continuous protein conformational changes using structural information at the frequency of 1/3 A^-1, and present the results in a more interpretable form.

Keywords

Links

https://www.sciencedirect.com/science/article/pii/S0022283623000700

Related software

Related methods

Comments