2024Powell TomoDRGN

From 3DEM-Methods
Revision as of 06:52, 7 August 2024 by WikiSysop (talk | contribs) (Created page with "== Citation == Powell, Barrett M. / Davis, Joseph H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. 2024. Nature Methods, p. 1-12 == Abstract == Cryo-electron tomography (cryo-ET) enables observation of macromolecular complexes in their native, spatially contextualized cellular environment. Cryo-ET processing software to visualize such complexes at nanometer resolution via iterative alignment and averaging are well developed but rely...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

Powell, Barrett M. / Davis, Joseph H. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. 2024. Nature Methods, p. 1-12

Abstract

Cryo-electron tomography (cryo-ET) enables observation of macromolecular complexes in their native, spatially contextualized cellular environment. Cryo-ET processing software to visualize such complexes at nanometer resolution via iterative alignment and averaging are well developed but rely upon assumptions of structural homogeneity among the complexes of interest. Recently developed tools allow for some assessment of structural diversity but have limited capacity to represent highly heterogeneous structures, including those undergoing continuous conformational changes. Here we extend the highly expressive cryoDRGN (Deep Reconstructing Generative Networks) deep learning architecture, originally created for single-particle cryo-electron microscopy analysis, to cryo-ET. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct heterogeneous structural ensembles supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET. We additionally illustrate tomoDRGN’s efficacy in analyzing diverse datasets, using it to reveal high-level organization of human immunodeficiency virus (HIV) capsid complexes assembled in virus-like particles and to resolve extensive structural heterogeneity among ribosomes imaged in situ.

Keywords

Links

https://www.nature.com/articles/s41592-024-02210-z

Related software

Related methods

Comments