2022Zhang CRITASSER

From 3DEM-Methods
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Citation

Zhang, Xi / Zhang, Biao / Freddolino, Peter L. / Zhang, Yang. CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. 2022-02, Nature methods, Vol. 19, p. 195-204

Abstract

Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure determination, but it remains challenging to accurately model atomic structures with cryo-EM density maps. We propose a hybrid method, CR-I-TASSER (cryo-EM iterative threading assembly refinement), which integrates deep neural-network learning with I-TASSER assembly simulations for automated cryo-EM structure determination. The method is benchmarked on 778 proteins with simulated and experimental density maps, where CR-I-TASSER constructs models with a correct fold (template modeling (TM) score >0.5) for 643 targets that is 64% higher than the best of some other de novo and refinement-based approaches on high-resolution data samples. Detailed data analyses showed that the main advantage of CR-I-TASSER lies in the deep learning-based Cα position prediction, which significantly improves the threading template quality and therefore boosts the accuracy of final models through optimized fragment assembly simulations. These results demonstrate a new avenue to determine cryo-EM protein structures with high accuracy and robustness covering various target types and density map resolutions.

Keywords

Links

https://www.nature.com/articles/s41592-021-01389-9

Related software

Related methods

Comments