2023Wang CryoREAD

From 3DEM-Methods
Revision as of 08:28, 9 January 2024 by WikiSysop (talk | contribs) (Created page with "== Citation == Wang, Xiao / Terashi, Genki / Kihara, Daisuke. CryoREAD: De novo structure modeling for nucleic acids in cryo-EM maps using deep learning. 2023. Nature Methods...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Citation

Wang, Xiao / Terashi, Genki / Kihara, Daisuke. CryoREAD: De novo structure modeling for nucleic acids in cryo-EM maps using deep learning. 2023. Nature Methods, Vol. 20, No. 11, p. 1739-1747

Abstract

DNA and RNA play fundamental roles in various cellular processes, where their three-dimensional structures provide information critical to understanding the molecular mechanisms of their functions. Although an increasing number of nucleic acid structures and their complexes with proteins are determined by cryogenic electron microscopy (cryo-EM), structure modeling for DNA and RNA remains challenging particularly when the map is determined at a resolution coarser than atomic level. Moreover, computational methods for nucleic acid structure modeling are relatively scarce. Here, we present CryoREAD, a fully automated de novo DNA/ RNA atomic structure modeling method using deep learning. CryoREAD identifies phosphate, sugar and base positions in a cryo-EM map using deep learning, which are traced and modeled into a three-dimensional structure. When tested on cryo-EM maps determined at 2.0 to 5.0 Å resolution, CryoREAD built substantially more accurate models than existing methods. We also applied the method to cryo-EM maps of biomolecular complexes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Keywords

Links

https://www.nature.com/articles/s41592-023-02032-5

Related software

Related methods

Comments