2020Sader Facility

From 3DEM-Methods
Jump to navigation Jump to search


Sader, K.; Matadeen, R.; Castro Hartmann, P.; Halsan, T.; Schlichten, C. Industrial cryo-EM facility setup and management. Acta crystallographica. Section D, Structural biology, 2020, 76, 313-325


Cryo-electron microscopy (cryo-EM) has rapidly expanded with the introduction of direct electron detectors, improved image-processing software and automated image acquisition. Its recent adoption by industry, particularly in structure-based drug design, creates new requirements in terms of reliability, reproducibility and throughput. In 2016, Thermo Fisher Scientific (then FEI) partnered with the Medical Research Council Laboratory of Molecular Biology, the University of Cambridge Nanoscience Centre and five pharmaceutical companies [Astex Pharmaceuticals, AstraZeneca, GSK, Sosei Heptares and Union Chimique Belge (UCB)] to form the Cambridge Pharmaceutical Cryo-EM Consortium to share the risks of exploring cryo-EM for early-stage drug discovery. The Consortium expanded with a second Themo Scientific Krios Cryo-EM at the University of Cambridge Department of Materials Science and Metallurgy. Several Consortium members have set up in-house facilities, and a full service cryo-EM facility with Krios and Glacios has been created with the Electron Bio-Imaging Centre for Industry (eBIC for Industry) at Diamond Light Source (DLS), UK. This paper will cover the lessons learned during the setting up of these facilities, including two Consortium Krios microscopes and preparation laboratories, several Glacios microscopes at Consortium member sites, and a Krios and Glacios at eBIC for Industry, regarding site evaluation and selection for high-resolution cryo-EM microscopes, the installation process, scheduling, the operation and maintenance of the microscopes and preparation laboratories, and image processing.




Related software

Related methods