2023Zeng AITOM

From 3DEM-Methods
Jump to navigation Jump to search

Citation

Zeng, Xiangrui / Kahng, Anson / Xue, Liang / Mahamid, Julia / Chang, Yi-Wei / Xu, Min. High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering. 2023. Proc. Natl. Acad. Sci. USA, Vol. 120, p. e2213149120

Abstract

Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computerassisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.

Keywords

Links

https://www.pnas.org/doi/abs/10.1073/pnas.2213149120

Related software

Related methods

Comments